

Welcome to Read the Docs

This is an autogenerated index file.

Please create an index.rst or README.rst file with your own content
under the root (or /docs) directory in your repository.

If you want to use another markup, choose a different builder in your settings.
Check out our Getting Started Guide [https://docs.readthedocs.io/en/latest/getting_started.html] to become more
familiar with Read the Docs.

Index

Developer Guide

RicciPy is a community project, hence all contributions are more than
welcome!

Bug reporting

Not only things break all the time, but also different people have different
use cases for the project. If you find anything that doesn’t work as expected
or have suggestions, please refer to the issue tracker [https://github.com/einsteinpy/riccipy/issues] on GitHub.

Documentation

Documentation can always be improved and made easier to understand for
newcomers. The docs are stored in text files under the docs/source
directory, so if you think anything can be improved there please edit the
files and proceed in the same way as with code writing.

The Python classes and methods also feature inline docs: if you detect
any inconsistency or opportunity for improvement, you can edit those too.

Besides, the wiki [https://github.com/einsteinpy/einsteinpy/wiki] is open for everybody to edit, so feel free to add
new content.

To build the docs, you must first create a development environment (see
below) and then in the docs/ directory run:

$ cd docs
$ make html

After this, the new docs will be inside build/html. You can open
them by running an HTTP server:

$ cd build/html
$ python -m http.server
Serving HTTP on 0.0.0.0 port 8000 ...

And point your browser to http://0.0.0.0:8000.

Code writing

Code contributions are welcome! If you are looking for a place to start,
help us fixing bugs in riccipy and check out the “easy” tag [https://github.com/einsteinpy/riccipy/issues?q=is%3Aissue+is%3Aopen+label%3Aeasy]. Those
should be easier to fix than the others and require less knowledge about the
library.

If you are hesitant on what IDE or editor to use, just choose one that
you find comfortable and stick to it while you are learning. People have
strong opinions on which editor is better so I recommend you to ignore
the crowd for the time being - again, choose one that you like :)

If you ask me for a recommendation, I would suggest PyCharm (complete
IDE, free and gratis, RAM-hungry) or vim (powerful editor, very lightweight,
steep learning curve). Other people use Spyder, emacs, gedit, Notepad++,
Sublime, Atom…

You will also need to understand how git works. git is a decentralized
version control system that preserves the history of the software, helps
tracking changes and allows for multiple versions of the code to exist
at the same time. If you are new to git and version control, I recommend
following the Try Git tutorial [https://try.github.io/].

If you already know how all this works and would like to contribute new
features then that’s awesome! Before rushing out though please make sure it
is within the scope of the library so you don’t waste your time -
email us or chat [https://riot.im/app/#/room/#einsteinpy:matrix.org] with us on Riot!.

If the feature you suggest happens to be useful and within scope, you will
probably be advised to create a new wiki [https://github.com/einsteinpy/einsteinpy/wiki] page with some information
about what problem you are trying to solve, how do you plan to do it and
a sketch or idea of how the API is going to look like. You can go there
to read other good examples on how to do it. The purpose is to describe
without too much code what you are trying to accomplish to justify the
effort and to make it understandable to a broader audience.

All new features should be thoroughly tested, and in the ideal case the
coverage rate should increase or stay the same. Automatic services will ensure
your code works on all the operative systems and package combinations
riccipy support - specifically, note that riccipy is a Python 3 only
library.

Development environment

These are some succint steps to set up a development environment:

	Install git [https://git-scm.com/] on your computer.

	Register to GitHub [https://github.com/].

	Fork riccipy [https://help.github.com/articles/fork-a-repo/].

	Clone your fork [https://help.github.com/articles/cloning-a-repository/].

	Install it in development mode using
pip install --editable /path/to/riccipy/[dev] (this means that the
installed code will change as soon as you change it in the download
location).

	Create a new branch.

	Make changes and commit.

	Push to your fork [https://help.github.com/articles/pushing-to-a-remote/].

	Open a pull request! [https://help.github.com/articles/creating-a-pull-request/]

Code Linting

To get the quality checks passed, the code should follow some standards listed below:

	Black [https://black.readthedocs.io/en/stable/] for code formatting.

	isort [https://isort.readthedocs.io/en/latest/] for imports sorting.

	mypy [http://mypy-lang.org/] for static type checking.

But to avoid confusion, we have setup tox [https://tox.readthedocs.io/en/latest/] for
doing this in one command and doing it properly! Run:

$ cd riccipy/
$ tox -e reformat

And it will format all your code!

RicciPy - Making Einstein possible in Python Symbols

RicciPy is an open source package that exists as part of The EinsteinPy Project for the purpose
of providing a API that makes tensor algebra as easy as possible on arbitrary manifolds.
RicciPy implements the use of Sympy for representing tensor equations and expressions symbolically
with automatic applications of a metric when contracting indices. Lastly, the Library also provides a
means for converting the results of tensor equations to numpy-like functions for use in numerical
calculations. It is released under the MIT license.

View source code [https://github.com/einsteinpy/riccipy] of RicciPy!

Key features of RicciPy are:

TBD

RicciPy is developed by an open community. Release
announcements and general discussion take place on our mailing list [https://groups.io/g/einsteinpy-dev]
and chat [https://riot.im/app/#/room/#einsteinpy:matrix.org].

The source code [https://github.com/einsteinpy/riccipy], issue tracker [https://github.com/einsteinpy/riccipy/issues] and wiki [https://github.com/einsteinpy/riccipy/wiki/] are hosted on GitHub, and all
contributions and feedback are more than welcome.

RicciPy works on recent versions of Python and is released under
the MIT license, hence allowing commercial use of the library.

Contents

	Developer Guide
	Bug reporting

	Documentation

	Code writing

	Development environment

	Code Linting

	RicciPy API
	Tensor Module

	Metric Tensor Module

	Partial Derivatives Module

RicciPy API

Library for providing an abstract tensor algebra engine for performing
calculations on arbitrary manifolds.

	Tensor Module

	Metric Tensor Module

	Partial Derivatives Module

Metric Tensor Module

This module contains the class for defining a Metric belonging to any arbitary spacetime:

Partial Derivatives Module

Provides classes to represent differentiation operators as tensors.

Tensor Module

This module provides a wrapper to the tensor algebra engine provided by Sympy such that
component calculations can be made from expressions comprised of tensors.

 nav.xhtml

 Table of Contents

 		
 Welcome to Read the Docs

_static/file.png

_static/minus.png

_static/plus.png

